# of Displayed Technologies: 4 / 4


Salvianolic Acid (SAA) Treatment of FSHD
TS-002175 — The third most common type of muscular dystrophy, Facioscapulohumeral Muscular Dystrophy (FSHD), affects over 870,000 individuals worldwide by causing debilitating pain, muscle weakness, fatigue along with many other symptoms in their face, shoulders, upper arms and lower legs. Researchers at Nationwide Children’s Hospital created a treatment using Salvianolic Acid (SAA) as a drug therapy for neuromuscular disorders including FSHD.
SAA, a natural compound found in the Salvia plant, has never been used for treating FSHD or any other neuromuscular disorder before. The compound inhibits protein methyltransferase (PRMT1), protects cells from double-homeobox gene 4 (DUX4) induced death and reduces the addition of methyl groups on t…
  • College:
  • Inventors: Harper, Scott; Eidahl, Jocelyn; Knox, Renatta; Wallace, Lindsay
  • Licensing Officer: Eidahl, Jocelyn

Gene Therapy for CMT1B
TS-002174 — Currently, no cure exists for Charcot-Marie tooth type 1B (CMT1B). Inventors and specialists in Gene Therapy at Nationwide Children’s Hospital invented a methodology along with sequences for using microRNAs (miRNA) to inhibit and replace abnormal expressions of the myelin protein zero (MPZ) gene. Affecting 1 in 30,000 people, CMT1B is caused by more than 200 mutations of the MPZ, the essential protein needed for a healthy and efficient peripheral nervous system. The accumulation of mutant MPZ genes will result in, but not limited to, muscle weakness, atrophy, lost of sensation in the lower legs and feet and sensory loss.
These methods can treat, delay the progress of and prevent diseases caused by the mutations. This gene therapy knocks down MPZ gene expression with nucleic acid encoded artificial microRNAs hybridized to target nucleic acid sequences at the mRNA level and a nucleic acid encoding a codon-optimized MP…
  • College:
  • Inventors: Rashnonejad, Afrooz; Harper, Scott
  • Licensing Officer: Eidahl, Jocelyn

GRIN2D RNAi Gene Therapy to Treat Epilepsy
TS-002006 — Overexpression of the GRIN2D gene can cause Developmental and Epileptic Encephalopathy (DEE) in which individuals may experience developmental delays or intellectual disabilities, epilepsy, abnormal muscle tone, movement disorders, autism spectrum disorder and cortical visual impairment. Currently, only supportive care is available. Genetic Researchers at Nationwide Children’s Hospital developed a RNAi gene therapy to treat epilepsy caused by GRIN2D. They propose decreasing the expression of GRIN2D through a gene-level specific reagent which will knock down the mRNA containing the variant postnatally. As a result, reducing the possibility of children developing GRIN2D-related DEE.
  • College:
  • Inventors: Harper, Scott
  • Licensing Officer: Eidahl, Jocelyn

An Inducible Facioscapulohumeral Muscular Dystrophy (FSHD) Mouse Model Expressing DUX4
TS-000199 — Facioscapulohumeral Muscular Dystrophy (FSHD) is the third most common muscular dystrophy, affecting 1 in 20,000 individuals. There is no current treatment for FSHD; therefore, animal models of the disease are essential for testing potential therapies. Researchers at Nationwide Children’s Hospital have developed a mouse model that recapitulates the FSHD phenotype and develops myopathy. This is an inducible FSHD mouse model that stably expresses the disease-causing gene, DUX4, from the mouse genome using the human DUX4 promoter. Importantly, in comparison to other FSHD mouse models, this particular inducible model circumvents lethality and leakiness problems seen in past models of the disease. Available for purchase through Jax Labs jax.org Stock No: 032779 Potential Applications/Markets: The FSHD field is lacking a good mouse model that recapitulates FSHD phenotypes and develops myopathy. Opportunity/Seeking: Licensing
  • College:
  • Inventors: Harper, Scott
  • Licensing Officer: Eidahl, Jocelyn

Loading icon