# of Displayed Technologies: 30 / 35

Applied Category Filter (Click To Remove): Gene Therapies & AAV Production


AAV Vectors Containing U7small Nuclear RNA (U7snRNA That Interferes With The CTGexp or Silences DMPK)
TS-001229 — Mutations in the Myotonic Dystrophy Protein Kinase gene (DMPK) cause an autosomal dominant inherited disease referred to as Myotonic Dystrophy. Myotonic Dystrophy affects more than 1 in 8,000 people worldwide. Myotonic dystrophy results in progressive muscle weakness, stiffness and wasting. Currently, here are no treatments for this disease. A team of researchers at Nationwide Children’s Hospital have designed short hairpin constructs of AAV-shRNA which can be used to silence DMPK mRNA and therefore potentially treat myotonic dystrophy.
  • College:
  • Inventors: Wein, Nicolas
  • Licensing Officer: Eidahl, Jocelyn

Overcoming Immune Checkpoint Inhibition with VISTA Deficient NK Cells – ViDe* NK Cells
TS-000972 — Natural Killer (NK) cells express a range of receptors to activate or inhibit certain cellular behavior to kill cancer cells. When an NK cell is deficient or dysfunctional, the efficiency of the NK cells is severely limited. VISTA is a protein sequence that activates T cells and acts as a moderator for the immune system. It has low-to-moderate expression but has been the target of study by a team of researchers at Nationwide Children’s Hospital led by Dr. Dean Lee. By removing VISTA in expanded NK cells, the inhibitory signal will be eliminated and thus resulting in an enhanced ability of NK cells to target cancers and overcome the immune-suppressive signals for improved cancer immunotherapy.
  • College:
  • Inventors: Lee, Dean; Pereira, Marcelo
  • Licensing Officer: Corris, Andrew

Generation of Antigen-Specific Chimeric Antigen Receptor T cells Using Cas9/RNP and AAV
TS-000969 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Adeno-associated virus (AAV) serotypes such as AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74 have properties optimized by these researchers. Chimeric Antigen Receptor T cells (CAR T) are comprised of an extracellular antigen recognition domain, intracellular T cell activation and co-stimulatory domains. These cells allow for potent and specific targeting of cancer cells, bypassing the need for antigen presentation and T cell receptor recognition. Generating CAR T cells using the process of lentiviral transduction has limitations stemming from the random integration of transgenesis, where oncogene activation, gene silencing, or negative effects on the CAR T antitumor efficacy are possible.
  • College:
  • Inventors: Lee, Dean; Naeimi Kararoudi, Meisam
  • Licensing Officer: Corris, Andrew

AAV-Vector Plasmid: AAV Reporter, pscCMV-luc2p+
TS-000852 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Adeno-associated virus (AAV) serotypes such as AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74 have properties optimized by these researchers. The new plasmid named pscCMV-luc2P+ has several improvements including modifications that provide a significant improvement in packaging efficiency of AAV vectors, reduction in potential to form replication competent AAV and the inclusion of the ampicillin resistance gene. Dr. Scott Loiler and his team have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

AAV-Helper Plasmid: AAV9 Production, pNLRep-Cap1-Kan
TS-000851 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Adeno-associated virus (AAV) serotypes such as AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74 have properties optimized by these researchers. The new plasmid named pNLRep-Cap1- Kan has several improvements including modifications that provide a significant improvement in packaging efficiency of AAV vectors, reduction in potential to form replication competent AAV and the inclusion of the ampicillin resistance gene. Dr. Scott Loiler and his team have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

pNLRep2-Cap1-kan
TS-000643 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Production of rAAV in vero cells using Simian adenovirus 13 as helper
TS-000639 — Infectious recombinant Adeno-associated virus (rAAV) are exclusively used as gene transfer vehicles for an ever-widening array of human applications such as for use as vaccines and gene therapy vectors. A requirement for the clinical use of rAAV for DNA delivery is a highly efficient, reproducible and commercially scalable production. The most common methods of scalable rAAV production use HeLa cells. HeLa cells are derived from malignant cervical tumor and therefore, raises potential safety concerns. Gene therapy experts at Nationwide Children’s Hospital have developed new methods and materials achieving higher titers of rAAV in mammalian cells other than transformed cancer cells. This invention achieves scalable production of rAAV using clinically safe Vero cells derived from African green monkey kidney cells combined with the simian adenovirus 13 helper virus.
  • College:
  • Inventors: Clark, Kelly Reed; Beall, Cliff; Johnson, Philip
  • Licensing Officer: Barkett, Margaret

Targeted Expression of Apoptosis-Inducing Genes for Treating Cancer.
TS-000638 — One of the most promising forms of cancer gene therapy is delivery of genes directly to the tumor to facilitate cancer cell death. Gene therapy experts at Nationwide Children’s Hospital have developed a tumor-targeted novel molecular treatment by fusing two genes, Survivin and Granzyme B. Survivin is expressed at high levels in all tumors and Granzyme B induces apoptosis in tumor cells. The recombinant DNA is delivered to the target cells by another agent, such as liposome. This approach represents a universal method for targeting tumor cells that express Survivin and induce death of those cells, leaving minimal effect on healthy cells, unlike conventional chemotherapeutic approaches.
  • College:
  • Inventors: Altura , Rachel; Caldas, Hugo (Hannah )
  • Licensing Officer: Corris, Andrew

pNLRep2-Cap2.5-kan
TS-000629 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

pNLRep2-Cap9-v2
TS-000628 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

pNLRep2-Caprh74kan-AVB
TS-000627 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

pNLRep2-Caprh74Kan
TS-000626 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

pNLRep2-Cap8kan
TS-000625 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Functional Cas9 Expressed Internally in AAV Particle
TS-000598 — CRIPSR/Cas9 gene editing technology is a promising tool for treating disease but requires the delivery of the large Cas9 enzyme. Gene therapy experts at Nationwide Children’s Hospital have taken two different approaches to couple the CRISPR gene editing machinery with AAV, including constructing Cas9 enzyme as a stable component of the AAV particle, as well as expressing Cas9 on the surface of the viral particle.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Methods and Materials for Recombinant Adeno-Associated Virus Production.
TS-000597 — Recombinant adeno-associated virus (rAAV) is one of the most used viral vectors for gene therapy. However, large-scale rAAV production is labor intensive and costly due to the requirement for an efficient rAAV synthesis in stable cell lines. A team of researchers at Nationwide Children’s have developed a simple and cost-effective technique to ease the production of rAAV. Compared to existing methods, this approach allows more rAAV genomes to be encapsulated into infectious rAAV particles while allowing the production of rAAV in several cell types. The materials and methods of this invention are covered in the US issued patent 8,409,842.
  • College:
  • Inventors: Johnson, Philip; Clark, Kelly Reed
  • Licensing Officer: Eidahl, Jocelyn

AAV-Mediated HITI Gene Editing for Correction of Diverse DMD Mutations in Patients with Muscular Dystrophy
TS-000513 — Dystrophinopathies are a group of disorders caused by mutations in the DMD gene which codes for dystrophin, the vital, muscle-specific structural protein. Currently, there is no cure for muscular dystrophy, and patients only rely on palliative care options. Our gene therapy researchers at Nationwide Children’s Hospital have developed an AAV-mediated gene editing method for correcting deleterious DMD mutations in affected patients. This therapy uses a homology-independent targeted integration (HITI) to replace any missing or aberrant exons in affected patients; therefore, correcting the underlying cause of DMD. This therapy will be developed to stop the progression of muscle wasting and fibrosis in individuals with DMD mutations that result in muscular dystrophy via permanent correct of the underlying cause within muscle tissue by replacing missing or aberrant exons using HITI. Advantages By developing AAV-Mediated HITI gene editing for correction of diverse DMD mutations in patients with muscular dystrophy, we can potentially cure BMD and DMD patients. These patients currently have no palliative care options. Our compositions of matter for this approach (i.e. genomic target region, guide-RNA sequences, donor DNA sequences) are new. Stage of Development Proof of concept studies completed Intellectual Property Provisional Patent Pending
  • College:
  • Inventors: Flanigan, Kevin; Havens, Julian; Stephenson, Anthony
  • Licensing Officer: Eidahl, Jocelyn

Cerebrospinal Fluid Delivery as a New Route for AAV Gene Therapy Targeting Cells of the Cochlea
TS-000500 — AAV mediated gene therapy is a promising therapeutic route for the treatment of inner ear disorders. However, finding a safe and effective delivery route for a gene therapy has been proven difficult to achieve as traditional routes of administration can cause additional damage to cells of the inner ear. To circumvent this challenge, researchers at Nationwide Children’s have explored the cerebrospinal fluid delivery route to prevent procedural damages. Our researchers have designed vectors to include cochlea-cell type promoters to achieve cell type specific expression and therefore have designed a subset of highly effective AAV gene therapy candidates to treat disorders affecting the inner ear. The invention is to use cerebrospinal fluid (CSF) as a delivery route for AAV mediated gene therapy to the cochlea. We found that CSF injections lead to spreading of AAV vectors throughout the entire nervous system as well as result in good targeting of the inner hair cells inside the cochlea. This could be particularly interesting for diseases that affect both the central nervous system as well as cells in the ear/cochlea. Moreover, the CSF delivery route could be used in combination with a cochlea-cell type specific promoter to achieve cell type specific expression. It is a new delivery route which could be combined with various gene therapy approaches for hearing disorders. The delivery route is promising because alternative delivery routes with injection directly into the cochlea often result in damage caused by the procedure. That damage could be prevented using the intrathecal CSF route. Thus, gene therapies delivered that way could be safer and more effective since damage could be avoided. Benefits: Many groups are working on a cochleal cell targeting of AAVs using intratympanic injections or injections directly into the cochlea as well as intravenous injections. We envision using the CSF as the delivery method of choice. State of Development: Pre-clinical Potential Applications/Markets: This invention has broad applications in the field of neurological and neurodegenerative disorders that also affect hearing, as well as for diseases that affect hearing by debilitating cells of the cochlea. Thus, there is potential for development of therapies for several diseases. Opportunity/Seeking: Development Partner Licensing Seeking Investment IP Status: Patent Application Submitted
  • College:
  • Inventors: Meyer, Kathrin; Bey, Karim
  • Licensing Officer: Eidahl, Jocelyn

Reduction of Toxic Small Huntington Protein by Targeting Both Exon 1 mRNA and Mutant Huntington Protein Cleavage Pathways
TS-000497 — Huntington’s Disease (HD) is a late onset progressive neurodegenerative disorder that results in death in 10-15 years after the first sign of symptoms. Existing oligonucleotides (AONs) based therapies are imperfect as they knockdown wildtype protein, require consistent re-injections, and use potentially harmful molecules. Gene therapy experts at Nationwide Children’s have devised a gene therapy approach that uses a specific snRNA to stably and safely reduce the highly pathogenic protein HTT. By enabling a continuous expression of the therapeutic RNA in the nervous system (and other targets), this technology may delay the age of onset, slow symptom progression, and reduce symptom severity of HD. Hence, it has the potential to become the optimal therapeutic strategy for the treatment of HD.
  • College:
  • Inventors: Wein, Nicolas; Lesman, Daniel; Meyer, Kathrin
  • Licensing Officer: Eidahl, Jocelyn

New Indication for Small Molecule CuATSM
TS-000470 — CuATSM is a small molecule which facilitates the delivery of copper to cells containing damaged mitochondria, the cell compartments responsible for the production of energy. Currently, CuATSM has shown success in clinical trials for treating patients with ALS. Neurodegenerative disease experts at Nationwide Children’s Hospital have elucidated novel mechanisms of action through which the small molecule can treat disorders caused by oxidative stress, mitochondrial dysfunction and elevation of stress response systems. Through these studies, our disease experts have identified several new indications which could be treated with this small molecule compound.
  • College:
  • Inventors: Meyer, Kathrin; Dennys, Cassandra
  • Licensing Officer: Eidahl, Jocelyn

Optimizing Gene Therapy for Targeting of Specific Cell Types in the Retina Using Different Viral Vectors, Different Promoters and Different Delivery Routes
TS-000441 — Gene therapy experts at Nationwide Children’s hospital are utilizing adeno-associated virus (AAV) mediated gene therapy to target specific cell types within the retina to treat vision impairment, retinal degeneration and vision-related disorders. Although, use of ocular administration of gene therapy vectors has shown some promising results, there is a need for improved gene therapy methods. Our experts have designed various viral vectors, promoters, novel co-administration therapies and multiple delivery routes to target particular cell types in the retina. This preclinical study offers hope for treating vision loss. Benefits: This technology comprises different injection methods, different promoters, different viral vectors and combinatorial approaches. We have data which has enabled us to understand which viral vector/promoter/injection route combination works best for targeting of specific cell types in the retina. This will allow us to further improve gene therapy strategies for Batten Disease and for other disorders that cause retinal degeneration. Potential Markets/Applications: There are multiple groups working on AAV gene therapy for vision. The current methods are not sufficient to efficiently target bipolar cells in the retina. We are developing protocols and vectors that should be more efficient in targeting these cells as well as other cell types. Opportunity/Seeking: Development Partner Licensing Seeking Investment IP Status: Patent Application Submitted
  • College:
  • Inventors: Meyer, Kathrin; Kaspar, Brian; Likhite, Shibi
  • Licensing Officer: Eidahl, Jocelyn

AAV-Mediated CRISPR/Cas9 Gene Editing for Correction of DMD Exon Duplications in Patients with Muscular Dystrophy
TS-000438 — Gene therapy experts at Nationwide Children’s have developed an AAV-mediated CRISPR/Cas9 gene editing method for the correction of exon duplications in patients with DMD (Duchenne muscular dystrophy). This therapy has the potential to permanently corrects DMD by stopping and potentially reversing the progression of muscle wasting and fibrosis in affected individuals. Currently about 11% of DMD cases are caused by exon duplications and our experts plan to use this invention to correct for this underlying cause within muscle tissues.
  • College:
  • Inventors: Flanigan, Kevin; Stephenson, Anthony
  • Licensing Officer: Barkett, Margaret

AAV.IRF2BPL Mediated Gene Transfer for IRF2BPL Related Disorder
TS-000392 — IRF2BPL-related disorders are a group of neurodegenerative disorders, characterized by abnormal movements, loss of speech, and seizures, and are caused by mutations within the IRF2BPL gene. Researchers at Nationwide Children’s have devised a gene therapy approach that uses adeno-associated viruses together with specific promoters to mediate the transfer of a functional gene in affected individuals. This approach ensures the restoration of the IRF2BPL protein which then leads to a drastic health improvement in patients. This Intellectual Property contains several products: - AAV vectors containing the IRF2BPL gene under the control of different promoters. - AAV vectors containing only the IRF2BPL coding sequence under the control of different promoters. The AAV.IRF2BPL gene transfer tested in this intellectual property is a new approach for IRF2BPL related disorders. It includes the IRF2BPL gene or its coding sequence under the control of different promoter to express IRF2BPL. These approaches were never explored for IRF2BPL related diseases. Stage of Development Proof of principle: Designed IRF2BPL sequences that force expression of human IRF2BPL gene. We also developed several in vitro assays to study the disease and the therapeutic vectors. We reprogrammed patient cell lines and made neuronal progenitor cells (NPCs) and astrocytes. Future Work: We intend to evaluate the effect of patient mutations on the expression level of IRF2BPL protein. We intend to use patient cells to test if AAV.IRF2BPL approaches allow restoration of a WT IRF2BPL protein following treatment with each AAV in vitro. We intend to inject the most promising constructs into mice. We will also inject the constructs in wild type mice to evaluate safety Potential Applications/Markets: These products will force expression of wild type IRF2BPL for any patients containing IRF2BPL related disorders. Therefore, this product has potential as a therapeutic. Opportunity/Seeking: Development Partner Commercial Partner Licensing University Spin Out Seeking Investment IP Status: Patent application submitted
  • College:
  • Inventors: Meyer, Kathrin; Wein, Nicolas
  • Licensing Officer: Eidahl, Jocelyn

pNLRep2-Cap3b-Kan
TS-000391 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Increasing Tissue Specific Gene Delivery by AAVrh74 Capsid Modification
TS-000364 — Researchers at Nationwide Children's Hospital have identified modified capsid sequences of the Adeno-associated Virus rh74 (AAVrh74) native capsid that improve delivery of genes to specific target cells or overall global gene delivery. These include modifications that increase specific gene delivery to either the heart or muscle stem cells.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Protein and Gene Therapies for Congenital Muscular Dystrophy 1A and the Dystroglycanopathies Involving Linker Proteins
TS-000358 — Congenital Muscular Dystrophy Type 1A (CMD1A) usually presents in the neonatal period with marked muscle weakness and severe hypotonia. CMD1A patients show deficiency in laminin-alpha2 (LAMA2) protein caused by the genetic mutations leading to weaker and unstable muscle tissue. Gene therapy experts at Nationwide Children’s Hospital have developed a gene and protein therapy approach enabling delivery of key domains of LAMA2 using adeno-associated virus (AAV). In addition, our experts have engineered fusion proteins that assist in anchoring LAMA2 to the muscle membrane thereby improving the muscle-matrix interaction and muscle integrity.
  • College:
  • Inventors: Martin, Paul
  • Licensing Officer: Eidahl, Jocelyn

pNLRep2-Cap6kan
TS-000357 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

pNLRep2-Cap2kan
TS-000354 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Functional Cas9 Expressed Internally in AAV Particle
TS-000322 — CRIPSR/Cas9 gene editing technology is a promising tool for treating disease but requires the delivery of the large Cas9 enzyme. Gene therapy experts at Nationwide Children’s Hospital have taken two different approaches to couple the CRISPR gene editing machinery with AAV, including constructing Cas9 enzyme as a stable component of the AAV particle, as well as expressing Cas9 on the surface of the viral particle.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Induction of Dystrophin DelCH2 Isoform
TS-000308 — Absence of the dystrophin protein leads to the severe muscle disorder Duchenne Muscular Dystrophy (DMD). Nearly asymptomatic patients have been identified to produce a functional N-terminal truncated dystrophin protein. Gene therapy experts at Nationwide Children's Hospital are developing a U7-snRNA exon skipping strategy to facilitate expression of a truncated dystrophin protein for patients carrying mutations within exon 6 to 9 of the DMD gene, rendering their dystrophin nonfunctional. Our experts have effectively skipped exon 8 in patient-derived cell lines and in turn produced a functional truncated dystrophin protein product.
  • College:
  • Inventors: Wein, Nicolas; Flanigan, Kevin
  • Licensing Officer: Eidahl, Jocelyn

pHELP-kanv4
TS-000307 — Gene therapy experts at Nationwide Children’s Hospital have made significant advancements in designing optimal viral vectors for producing Good Manufacturing Practice (GMP)-grade viral vector products. Our experts have optimized properties of vectors for a wide variety of Adeno-associated virus (AAV) serotypes, including AAV1, 2, 2.5, 3, 5, 6, 8, 9 and rh74. In particular, our experts have optimized virus packaging efficiency, reduced potential to form replication competent AAV and replaced the beta-lactam resistant gene with kanamycin in order to be compliant with European Union (EU) regulations. Our experts have made additional optimized vectors for AAVrh74, and AAV9 that allow for more efficient purification and improved CNS transduction, respectively.
  • College:
  • Inventors: Loiler, Scott
  • Licensing Officer: Corris, Andrew

Show More Technologies

Loading icon